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Abstract: A concise outline of the
known derivation of the singlet ± triplet
energy-gap equations within the sym-
metry-broken wavefunction framework
is given. They allow a computation of
the singlet ± triplet energy gap for mol-
ecules that exhibit a weak antiferromag-
netic coupling of electrons. The accuracy
of the equations is assessed by compu-
tation of the singlet ± triplet gaps in
model Na2 molecules. Various antiferro-
magnetic coupling strengths are simu-
lated by the use of different NaÿNa
bond lengths in the computations. The
singlet ± triplet energy gaps obtained
with the different equations are com-
pared with the gaps computed with the
more accurate coupled-cluster methods.
Subsequently, the equations are applied

to an iminosemiquinone copper(ii) com-
plex found previously to have remark-
able catalytic properties. The applica-
tion is performed by employing wave-
function equations but with quantities
computed within the density functional
framework. The electronic ground state
of this complex is computed to be a
singlet state, which is also the experi-
mental finding. Moreover, the experi-
mental geometry and the singlet ± triplet
gap are reasonably reproduced by the

computation. A straightforward method
to determine the magnetic orbitals is
suggested and applied. We illustrate that
the form of the magnetic orbitals indi-
cates in a qualitative manner that hydro-
gen-atom abstraction should be a major
reaction pathway of the iminosemiqui-
none copper(ii) complex. Hydrogen-
atom abstraction has been suggested
previously to be the rate-determining
step in a catalytic process initiated by the
iminosemiquinone copper(ii) complex.
The results support the notion that the
form of the magnetic orbitals might be a
qualitative indicator for the reactivity of
molecules that exhibit weak antiferro-
magnetic coupling.
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Introduction

Recently, the iminosemiquinone copper(ii) complex [CuII(L2)-
(NEt)3] (1) was synthesized.[1] A remarkable feature of 1 is its
ability to selectively transform primary alcohols, except
CH3OH, in the presence of O2 to aldehydes and H2O2.[1]

The authors propose the mech-
anism given in Scheme 1 for
this catalytic process, in which
(L3)3ÿ represents the one-elec-
tron reduced, diamagnetic form
of the radical (L2)2ÿ. In this
mechanism the rate-determin-
ing step is a hydrogen-atom
abstraction from the a-carbon
atom of the alcohol, bonded as

an alcoholate to the copper atom. The remarkable reactivity
of complex 1 is supplemented by interesting magnetic proper-
ties. The temperature-dependent magnetic moments of 1 were
fitted to the Heisenberg Hamiltonian H�ÿ2 JSCu ´ SLig (SCu�
SLig� 1�2) and an exchange coupling constant of J�ÿ137 cmÿ1

was determined, indicative of a singlet ground state of 1. Thus,
a rather small singlet ± triplet gap exists in complex 1. At low
temperatures, the electronic singlet state prevails.[1] At
ambient temperatures, however, the triplet state is populat-
ed.[1] The observed small singlet ± triplet gap indicates that a
weak antiferromagnetic coupling operates in complex 1.

The computation of the electronic properties of such
complexes is, in general, a difficult problem. Electronic
wavefunctions are needed which allow electrons of opposite
spins to become localized in different spatial regions of the
molecule.[2] Thus, a careful treatment of the electron corre-
lation is mandatory in the description of the electronic
properties of these molecules. Staemmler and co-workers
employed the coupled electron pair approximation in a high-
quality ab initio approach to compute the coupling constants
J.[3] Several oxo-bridged CrIII, VIII, and TiIII complexes that
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Scheme 1. The proposed catalytic cycle[1] for the oxidation of alcohols with
catalyst 1. Notice the rate-determining hydrogen-atom abstraction step.

exhibit a weak antiferromagnetic coupling were treated.[3] The
computed J values are in good agreement with the values
obtained from magnetic measurements.[3] .Staemmler and co-

workers also treated the magnetic exchange coupling in
chlorine-bridged binuclear CoII complexes.[4] A characteristic
feature of their work is that spin-orbit coupling and Zeeman
splitting is explicitly considered in the computations.[4] More-
over, the temperature dependence of the magnetic suscepti-
bilities is computed.[4] A much less rigorous but simpler
theoretical procedure to treat molecules with a weak anti-
ferromagnetic coupling is the symmetry-broken formalism
introduced by Noodleman and co-workers.[5] This approach
has been successfully applied not only in the wavefunction,[6]

but also in the framework of density functional theory
(DFT).[7]

In this paper, we first outline the known derivation of the
approximate equations for a singlet ± triplet gap in the
formalism of broken symmetry. Then, we apply the equations
to the molecule Na2 in which the bond has been elongated by
various amounts. By the use of this simple scheme, we
simulate antiferromagnetic couplings of different strengths.
We assess the accuracy of the approximate singlet ± triplet gap
equations by comparison with results obtained from accurate
ab initio methods. The major objective of this paper, however,
is to understand qualitatively the electronic properties of
complex 1. We pursue this aim by application of the
symmetry-broken wavefunction formalism; however, we
employ quantities derived from density functional calcula-
tions.

Results and Discussion

A simple derivation of the symmetry-broken formalism for
molecules that exhibit a weak antiferromagnetic coupling

Restricted and unrestricted MO Slater determinants : Consider
a molecule in its singlet ground state: in most standard
quantum chemical procedures, a closed-shell, restricted
Hartree ± Fock (RHF) Slater determinant serves as a first-
order approximation to compute this electronic state. This
wavefunction is subsequently improved by consideration of
electron correlation in the computation. The restricted closed-
shell RHF Slater determinant is restricted because the a and b

electrons of an electron pair occupy not different but the same
molecular orbitals (MOs) in the Slater determinant. Conse-
quently, the spin-coupled electrons of an electron pair are
forced to occupy the same spatial regions in a molecule. Thus,
the RHF Slater determinant is a good first-order approxima-
tion for molecules that exhibit a strong antiferromagnetic
coupling. Such a coupling operates in the majority of organic
molecules. Many transition metal complexes, however, exhibit
a weak antiferromagnetic coupling. This often implies that
two weakly coupled electrons with a and b spin occupy
different spatial regions in a molecule. Noodleman suggested
that for this type of transition metal complex the electronic
wavefunction is well approximated by the unrestricted
Hartree ± Fock (UHF) Slater determinant.[5] The character-
istic feature of a UHF Slater determinant is that the space
parts of a and b-spin orbitals can be different.[8] If a weak
antiferromagnetic coupling operates, the UHF Slater deter-
minant leads to an energy which is lower than the energy for

Abstract in German: Die bekannte Ableitung von Formeln für
die Singulett ± Triplett Energieaufspaltung im symmetriegebro-
chenen Wellenfunktionsformalismus wird zusammengefaût.
Die Formeln erlauben die Singulett ± Triplet Energieaufspal-
tung für Moleküle zu berechnen deren Elektronen schwach
antiferromagnetisch gekoppelt sind. Die Genauigkeit der
Formeln für unterschiedliche Kopplungstärken wird überprüft.
Dies geschieht durch die Berechnung der Singulett ± Triplett
Energieaufspaltung in Na2 Molekülen mit unterschiedlichen
Na ± Na Bindungslängen und einem Vergleich mit genaueren
Singulett ± Triplett Energieaufspaltungen, die mit Coupled-
Cluster Methoden berechnet wurden. Anschlieûend werden
die Formeln auf einen Iminosemichinon Kupfer(ii) Komplex
angewendet, der bemerkenswerte katalytische Eigenschaften
besitzt. In Übereinstimmung mit dem Experiment, wird der
electronische Grundzustand als ein Singulett Zustand berech-
net. Die experimentelle Geometrie und die Singulett ± Triplett
Energieaufspaltung werden durch die Rechnung vernünftig
wiedergegeben. Ein einfaches Verfahren zur Bestimmung der
magnetischen Orbitale wird vorgeschlagen und angewendet.
Die Form der magnetischen Orbitale zeigt qualitative an, daû
Wasserstoffatomabstraktion ein Hauptreaktionsweg des Imi-
nosemichinon Kupfer(ii) Komplexes sein sollte. Die Ergebnisse
unterstützen die Vorstellung, daû die Form der magnetischen
Orbitale ein qualitativer Indikator für die Reaktivität von
Molekülen mit schwacher antiferromagnetischer Kopplung
sein könnte.
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the corresponding RHF Slater determinant. Noodleman
designates such a UHF Slater determinant as the symmetry-
broken wavefunction for a transition metal complex.[9] .The
symmetry is broken because the MOs in the UHF Slater
determinant do not necessarily transform as the irreducible
representations of the point group of the transition metal
complex. Moreover, the spin symmetry is broken because the
UHF Slater determinant does not describe a pure spin state[10]

but a state of mixed spin. Nevertheless, Noodleman showed
that from such a symmetry-broken wavefunction one can
obtain equations to compute the singlet ± triplet energy
splittings in transition metal complexes that exhibit a weak
antiferromagnetic coupling.[11] .

Three equations for the singlet ± triplet energy splitting : Con-
sider the symmetry-broken wavefunction YUHF

b , computed by
means of the unrestricted Hartree ± Fock (UHF) method.[8]

Such a YUHF
b is not an eigenfunction of the total spin operator

S2, a finding which is valid for any UHF Slater determinant.[10]

Nevertheless, one can expand YUHF
b into a set of Fi which are

eigenfunctions of the molecular Hamiltonian H[12] and of S2

[Eq. (1)].[13]

YUHF
b �

XN

i�1

ciFi (1)

Amos and Hall have shown that a UHF Slater determinant,
with a spin quantum number of about Si� n, contains only Fi

whose spin multiplicities 2 Si�1 are determined by Si� n, Si�
n�1, Si� n�2, and so forth.[14] Thus, for a YUHF

b whose major
component has a spin quantum number of Sb� 0, the sum in
Equation (1) ranges only over those FiS for which Si� 0, Si�
1, Si� 2, . . . holds. For a definite number of electrons, this set of
Si gives rise to the spin multiplicities recorded in the vertical
line of the spin-branching diagram.[15] The symmetry-broken
YUHF

b is an eigenfunction of the Sz spin operator with
eigenvalue Ms� 0. Consequently, only Fi appear in the sum
of Equation (1) for which Ms� 0 holds. The variational energy
EUHF

b is the expectation value of YUHF
b over the molecular

Hamiltonian H. By means of Equation (1) and utilization of
the properties that the Fi are orthonormal and eigenfunctions
of H with eigenvalue Ei, we obtain Equation (2) for EUHF

b .[16]

EUHF
b �hYUHF

b jH jYUHF
b i� c2

s Es�c2
t Et�

XN

i

'c2
i Ei (2)

Here, Es and Et are the exact energies of the singlet ground
state and of the first excited triplet state, respectively. The
corresponding expansion coefficients are designated by cs and
ct . The prime at the summation in Equation (2) symbolizes
that contributions for the singlet ground state and for the first
excited triplet state are omitted. Thus, the energy EUHF

b for the
symmetry-broken electronic state is a linear combination of
the exact energies of the various electronic states with spin
multiplicities other than singlet.[16] Equation (2) leads imme-
diately to a simple expression for the exact singlet ground
state energy Es [Eq. (3)]:

Es�
EUHF

b ÿ
XN

i

'c2
i Ei ÿ c2

t Et

c2
s

(3)

This formula is of interest for a computation of the singlet
ground state energy, provided a symmetry-broken UHF
wavefunction can be found. This concept has been pursued
by Ovchinnikov and Labanowski[17] who neglected the sum in
Equation (3) and used a variationally determined Et to
compute an approximate Es. They calculated its dependence
from the bending and stretching vibrational modes for the
molecules CH2 and O2, respectively.[17] Wittbrod and Schlegel
also applied the simplified Equation (3) to compute the
potential energy curves for the hydrogen fluoride and the
C ± H dissociation of methane.[18] They conclude that the
qualitative behavior of these curves is incorrect relative to
more exact potential energy curves.[18] Subtraction of Et from
both sides of Equation (3) gives an exact equation for the
singlet ± triplet splitting [Eq. (4)]:

EsÿEt�
EUHF

b ÿ
XN

i

'c2
i Ei ÿ �c2

s � c2
t �Et

c2
s

(4)

From the normalization of YUHF
b and Equation (1) we

derive Equation (5). By substitution of Equation (5) into
Equation (4), we obtain an equation for the exact singlet ±
triplet gap, namely Equation (6).

c2
s�c2

t � 1ÿ
XN

i

'c2
i

(5)

EsÿEt�
EUHF

b ÿ Et �
XN

i

'c2
i �Et ÿ Ei�

c2
s

(6)

An approximate EsÿEt can be derived from Equation (6)
by making the following assumptions: i) The spin contami-
nation of YUHF

b by electronic states higher than the first
excited triplet state is negligible. ii) The energy differences
EtÿEi on the right hand side of Equation (6) are small.
iii) The exact triplet energy Et in the numerator of Equa-
tion (6) is approximated by the variational energy EÄ

t obtained
by means of the restricted open-shell Hartree ± Fock
(ROSHF) method. Assumption (i) implies small expansion
coefficients ci for electronic states higher than the first exited
triplet state. The smallness of these ci was verified for several
molecules.[19] Condition (ii) should be operative in transition
metal complexes which frequently exhibit a dense spacing of
electronic states. This is in contrast to the majority of organic
molecules. Conditions (i) and (ii) imply that for a treatment of
transition metal complexes the sum in Equation (6) can be
neglected. By the use of assumptions (i) ± (iii) we obtain from
Equation (6) an approximate equation for the singlet ± triplet
energy splitting, namely Equation (7):

EsÿEt�
EUHF

b ÿ ~
Et

c2
s

(7)

In many transition metal complexes assumption (ii) holds
and we can suppose that Equation (7) is adequate for the
treatment of those compounds. In order to apply Equa-
tion (7), we have to determine c2

s . For this purpose we
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consider the expectation value over the spin operator S2

computed with YUHF
b . By the use of Equation (1) and

neglecting contributions from electronic states higher than
the first excited triplet state, we can write Equation (8):

hYUHF
b jS2 jYUHF

b i� c2
s Ss(Ss�1)�c2

t St(St�1) (8)

By neglecting those electronic states also in the normal-
ization condition for YUHF

b , we obtain Equation (9):

c2
s�c2

t � 1 (9)

In Equation (8) it is assumed that the symmetry-broken
electronic state is a mixture of the singlet ground state and the
first excited triplet state. Therefore, Ss� 0 and St� 1 hold. By
combining Equations (8) and (9), we obtain Equation (10) for
c2

s and substitution of Equation (10) into Equation (7) leads to
Equation (11).

c2
s � 1ÿhY

UHF
b jS2jY UHF

b i
2

(10)

EsÿEt�
2�EUHF

b ÿ ~
Et�

2ÿ hY UHF
b jS2jY UHF

b i (11)

This formula for the singlet triplet energy splitting has been
obtained and applied by Ovchinikov and Labanowski.[20]

Adamo et al. derived the same equation, which they applied
to the magnetic exchange interaction in copper(ii) m2-azido-
bridged complexes.[21] One can assume that the spin polar-
ization of the inner electrons can be neglected and only one a

and one b orbital are nonorthogonal. This idea has already
been pursued by Malrieu and co-workers.[22] . They obtained a
simplified Equation (11) in which the square of the overlap of
the magnetic orbitals appears instead of hYUHF

b j S2 jYUHF
b i.

Malrieu and co-workers investigated model cases, such as
H-He-H, as well as dinuclear copper complexes.[22] We can
specify Equation (11) for the case of a weak antiferromag-
netic coupling. For such a coupling, YUHF

b should comprise
nearly equal parts of singlet and triplet wavefunctions.
Therefore hYUHF

b j S2 jYUHF
b i� 1 holds and Equation (11)

yields Equation (12) for the singlet ± triplet gap:

EsÿEt� 2(EUHF
b ÿEÄ

t) (12)

This equation has been derived by Noodleman[11] and has
been extensively applied in the past.[6, 7] .In most applications
EÄ

t is the high-spin energy computed with the UHF wave-
function, which is not an eigenfunction of the spin operator S2.
Hart et al. have pointed out that the ferromagnetic, the
superexchange, and the ligand spin-polarization parts are
contained in the exchange coupling constant provided the
high-spin energy is derived from a spin-pure wavefunction.[6c]

Moreover, for several model compounds, the most accurate
exchange coupling constants were obtained by means of
ROSHF energies for the high-spin state.[6c] Therefore, we
employed the ROSHF triplet energy for EÄ

t to ensure that the
three important contributions are contained in Equations (11)

and (12). In the limit of a strong antiferromagnetic coupling,
hYUHF

b j S2 jYUHF
b i� 0 holds and one obtains Equation (13)

from Equation (11):

EsÿEt�EUHF
b ÿEÄ

t (13)

Thus, Equation (11) is a general formula for the singlet ±
triplet energy gap which holds for the whole range of
antiferromagnetic coupling strengths.[20, 21] In the following
section we assess the accuracy of Equations (11) ± (13) by
treating Na2 molecules with elongated bonds. These model
systems serve as a tool to simulate antiferromagnetic cou-
plings of different strengths.

Applied computational methods for the model Na2 mole-
cules : All computations for Na2 were performed by means of
the Gaussian 98 suite of ab initio programs[23] and we used the
standard 6-311G* Gaussian basis sets.[24] Thus, the valence
orbitals of the Na atoms are of approximate triple-zeta quality
and d polarization functions are provided.[24] We performed
RHF calculations for the singlet ground state of Na2

molecules in which various bond lengths are assumed and
we obtained the total energies ERHF

s . Subsequently, the
stability of the RHF Slater determinant with respect to a
symmetry-broken UHF solution was investigated. This was
carried out by means of the formalism proposed by Seeger
and Pople[25] which is referenced in Gaussian 98 by the
keyword STABLE. We modified STABLE by the option
OPT. This initiates the program to find the energy EUHF

b for
the UHF Slater determinant YUHF

b that describes the symme-
try-broken electronic state.[23] The quantity EÄ

t in Equa-
tions (11) ± (13) was derived by performing ROHF calcula-
tions for the first excited triplet state. For an assessment of the
accuracy of Equations (11) ± (13), accurate singlet ± triplet
energy differences are needed. They were obtained by means
of the coupled-cluster method.[26] Single and double excita-
tions and an estimate for triple excitations (CCSD(T)) were
included.[26] We computed the energy ECCSD�T�

s of the singlet
ground state and the energy ECCSD�T�

s of the first excited triplet
state. The expectation values hYUHF

b j S2 jYUHF
b i for the spin

operator S2 are routinely computed and printed out by the
Gaussian 98 program.[23] The approximate singlet ± triplet gap
Equations (11) ± (13) were obtained within the wavefunction
framework. However, we applied them to the iminosemiqui-
none copper(ii) complex 1 in the density functional theory
(DFT) formalism, as described below. For this purpose we
also employed Equations (11) ± (13); however, we used quan-
tities EUHF

b and EÄ
t computed by means of the B3LYP DFT

procedure.[27] Therefore, it is of interest to assess the accuracy
of Equations (11) ± (13) by applying them within the B3LYP
DFT framework. We performed B3LYP calculations for the
singlet ground state of Na2 molecules with various bond
lengths. This produced the corresponding energies EB3LYP

s .
Subsequently, the stability of the singlet solution with respect
to a symmetry-broken solution was investigated. This was
carried out by means of the formalism developed by
Bauernschmitt and Ahlrichs,[28] as implemented in Gaussian
98.[23] If the singlet B3LYP solution is unstable, the program
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finds the symmetry-broken B3LYP solution, which yields the
energy EUB3LYP

b . Thus, our adopted computational scheme is
very similar to the procedure applied by Gäfenstein et al. who
investigated the Bergman reaction by means of DFT compu-
tations.[29] The restricted DFT solution for the transition state
was found to be unstable.[29] An unrestricted symmetry-
broken DFT solution exists which is of lower energy than the
restricted one.[29] This finding is a consequence of the singlet
diradical character of the transition state.[29] The stability of
the restricted DFT solution as a function of the various
exchange correlation functionals has been carefully dis-
cussed.[29] For the approximate energy EÄ

t of the first excited
triplet state, we employed EROB3LYP

t computed by means of the
restricted open-shell formalism.

The accuracy of the approximate singlet ± triplet energy gap
equations

The symmetry-broken wavefunction formalism : We have
applied Equations (11) ± (13) to Na2 molecules with NaÿNa
bond lengths that are significantly longer than the exper-
imental bond length of 3.078 �.[30] By elongation of the Na ±
Na bond we simulate different antiferromagnetic coupling
strengths between the 3s electrons of the Na atoms which
form the s bond. The computational results are recorded in
Table 1. The data given in Entries 1 and 2 of Table 1 show that
for all bond lengths, EUHF

b is lower than ERHF
s . This finding

illustrates the well-known deficiency of the RHF Slater
determinant. It does not describe the correct homolytic bond
breaking of the NaÿNa bond, but a heterolytic bond breaking
that leads to the high-energy products Naÿ and Na�. The
energy differences EUHF

b ÿERHF
s are slightly larger for the

longer bond lengths considered. The finding that all EUHF
b are

lower than ERHF
s indicates that a weak antiferromagnetic

coupling operates in the distorted Na2 molecules. In Entries 4
and 5 we have given the coupled-cluster energies ECCSD�T�

t and
ECCSD�T�

s for the triplet and singlet state, respectively. Interest-
ingly, the ECCSD�T�

t values are close to the quantities EROHF
t

given in Entry 3. This agreement shows that EROHF
t , desig-

nated by EÄ
t in Equations (11) ± (13), is a rather good

approximation to the exact triplet energy Et . In Entry 6 we
give the energy differences ECCSD�T�

s ÿECCSD�T�
t which serve as

reference singlet ± triplet energy gaps. The singlet ± triplet
gaps obtained with the spin-corrected Equation (11) are given
in Entry 8. We realize that over the whole range of coupling
strengths, simulated Equation (11) performs with a uniform
accuracy of about 62 %. A less uniform performance should
hold for Equations (12) and (13), which describe the weak and
strong antiferromagnetic coupling regimes, respectively.
However, Entry 9 illustrates that Equation (12) also behaves
uniformly over the whole range of coupling strengths, and an
average accuracy of about 73 % is achieved. As expected,
Equation (13) (Entry 10) behaves slightly better in the strong
antiferromagnetic coupling case. For the largest distance of
6.0 �, the smallest singlet ± triplet energy difference of
302.4 cmÿ1 is computed. For this energy gap the spin-corrected
Equation (11) and correspondingly the Noodleman equation
[Eq. (12)] are quite accurate (73 %). At this largest distance,
hYUHF

b j S2 jYUHF
b i is close to unity (Entry 11). This indicates

that YUHF
b can be considered as an equal mixture of singlet

and triplet spin states. This finding might justify neglecting the
higher spin multiplicities in Equations (6) and (8). The rather
good performance of Equation (12) for a weak antiferromag-
netic coupling is in agreement with the results already found
by Hart et al.[6c] These authors performed configuration-
interaction calculations to obtain the exchange coupling
constants J for the model compounds H-He-H, [H-F-H]ÿ ,
and the molecule Cl4Ti2O. To simulate various antiferromag-
netic coupling strengths, they also varied definite bond lengths
in the molecules. Their constants J are the energy-gap values
of Equation (12) but divided by two. The singlet ± triplet gaps,
obtained from accurate computations, are best reproduced by
Equation (12), provided the ROHF energies for the high-spin
state are employed.[6c] Our results are also substantiated by
recent work of Ruiz et al. who computed singlet ± triplet gaps
for various dinuclear transition-metal complexes.[31] If a
symmetry-broken UHF wavefunction is applied, Equa-
tion (11) produces gaps which are in agreement with the
observed exchange coupling constants (see Table II in
ref. [31]).

The wavefunction formalism applied with density functional
quantities : Our B3LYP[27] results for the Na2 molecules with
elongated bonds are given in Table 2. For all distances, the

Table 1. The singlet ± triplet gaps computed by means of Equations (11) ± (13) for Na2 molecules with various bond lengths. The different bond lengths
simulate antiferromagnetic couplings of various strengths. Gaps obtained from coupled-cluster computations serve as a reference. At all coupling strengths,
the spin-corrected Equations (11) and (12) perform with an almost uniform accuracy. As expected, Equation (13) performs slightly better in the strong
antiferromagnetic coupling regime.

Entry Quantity RNa±Na� 3.5 � RNa±Na� 4.0 � RNa±Na� 5.0 � RNa±Na� 6.0 �

1 ERHF
s ÿ 323.689657 ÿ 323.683167 ÿ 323.665965 ÿ 323.650500

2 EUHF
b ÿ 323.695047 ÿ 323.694582 ÿ 323.692806 ÿ 323.692111

3 EROHF
t ÿ 323.683151 ÿ 323.687727 ÿ 323.690873 ÿ 323.691601

4 ECCSD�T�
t ÿ 323.686358 ÿ 323.690344 ÿ 323.692373 ÿ 323.692380

5 ECCSD�T�
s ÿ 323.714863 ÿ 323.709183 ÿ 323.698502 ÿ 323.693758

6 ECCSD�T�
s ÿECCSD�T�

t ÿ 0.028505 ÿ 0.018839 ÿ 0.006129 ÿ 0.001378
7 ERHF

s ÿEROHF
t ÿ 0.006506 0.004560 � 0.024908 � 0.041101

8 Equation (11) ÿ 0.016906 (59.3 %) ÿ 0.011065 (58.7 %) ÿ 0.003616 (59.0 %) ÿ 0.001003 (72.8 %)
9 Equation (12) ÿ 0.023792 (83.5 %) ÿ 0.013710 (72.8 %) ÿ 0.003866 (63.1) ÿ 0.001020 (74 %)

10 Equation (13) ÿ 0.011896 (41.7 %) ÿ 0.006855 (36.4 %) ÿ 0.001933 (31.5 %) ÿ 0.000510 (37.0 %)
11 hYUHF

b j S2 jYUHF
b i 0.5927 0.7610 0.9310 0.9827
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energies EUB3LYP
b (Entry 2) are lower than the energies EB3LYP

s

(Entry 1). Thus the symmetry-broken solution describes a
system that exhibits a weak antiferromagnetic coupling. The
energies EROB3LYP

t and EUB3LYP
t for the first excited triplet state

are given in Entries 3 and 4. They were computed by means of
the restricted and unrestricted open-shell formalism, respec-
tively. We realize that the EROB3LYP

t and the EUB3LYP
t values are

almost identical. This finding supports the notion that the use
of the restricted or the unrestricted EÄ

t entering Equa-
tions (11) ± (13) might not be decisive to obtain reasonable
singlet ± triplet gaps. The singlet ± triplet gaps computed with
the coupled-cluster method are given in Entry 5. Again, they
serve as reference energies for an assessment of the accuracy
of Equations (11) ± (13). At the limit of a weak coupling, the
general Equation (11) as well as the specified Equation (12)
should hold. The data given in Entries 6 and 7, however,
confirm the known result[21, 32] that Equations (11) and (12)
produce singlet ± triplet gaps which are too large by approx-
imately a factor of two (230 % and 244 %). One reason for the
insufficient accuracy of the spin-corrected Equation (11)
might be that a Slater determinant YUHF

b composed of
Kohn ± Sham orbitals is used to compute hYUHF

b j S2 jYUHF
b i.

Such a method has been questioned by Gräfenstein et al.,[29]

and they suggest an alternative method to compute the spin
contamination in unrestricted DFT computations.[29] . At the
smaller distance of 4.5 �, a stronger antiferromagnetic
coupling operates and Equation (13) should hold as well as
the general Equation (11). Indeed, Equations (11) and (13)
produce singlet ± triplet gaps with good accuracy (119 % and
95 %). Moreover, we observe that the strong coupling
Equation (13) produces reasonable singlet ± triplet gaps for
the whole range of coupling strengths. Ruiz et al. used this
strong coupling equation to obtain exchange coupling con-
stants which are in good agreement with experimental
values.[33] However, this agreement seems to arise from a
cancellation of errors, as pointed out by Caballol et al.[34]

Theoretical results for the iminosemiquinone copper(iiii)
complex

Applied computational method : We are primarily interested in
a qualitative understanding of the interesting reactivity of
complex 1. For this purpose, we considered model compound

1'' in which the tert-butyl and ethyl groups are replaced by
hydrogens. All computations of 1'' were performed by means
of the Gaussian 98 suite of ab initio programs[23] implemented
on an Origin 2000[35] We performed B3LYP[27] DFT calcula-
tions in which Becke�s hybrid exchange functional (B3) and
the correlation functional of Lee, Yang, and Parr (LYP) are
combined. Moreover, BP86 computations were performed by
the use of Becke�s density gradient-corrected exchange
potential (B)[36] and Perdew�s correlation functional
(P86).[37] All calculations were performed with a pseudopo-
tential for the copper atom combined with the corresponding
basis sets, as suggested by Preuss and co-workers.[38] The
pseudopotential and the basis sets were referenced by the
Gaussian keyword SDD. With a reasonable starting geometry
for 1'', we performed restricted BP86 and B3LYP computa-
tions for the singlet ground state. Subsequently, the restricted
solutions were tested with respect to instabilities by means of
the procedure developed by Bauernschmitt and Ahlrichs.[28]

This method has been referenced in Gaussion98 by the use of
the modified keyword STABLE�OPT. The restricted sol-
utions were found to be unstable at the starting geometry and
unrestricted solutions, with a lower energy than the restricted
ones, were found by the program. This indicates that in 1'' a
weak antiferromagnetic coupling operates and the symmetry-
broken formalism[5±7] can be applied. We used the symmetry-
broken DFT solutions as a starting guess to find the optimized
geometries for the symmetry-broken electronic state of 1''.
Subsequently, vibrational frequency calculations were per-
formed to check for the presence of minima on the potential
energy surfaces.

With the B3LYP-optimized geometry of 1'', the energy
for the unrestricted symmetry-broken solution was
ÿ921.180598 a.u. and the restricted solution had an energy
of ÿ921.142642 a.u. (Table 3). The lower energy of the
symmetry-broken solution shows that a weak antiferromag-
netic spin-coupling operates in 1''. The corresponding expect-
ation value over the total spin operator S2 is 1.0163. Therefore,
the symmetry-broken solution at the optimized B3LYP
geometry seems to be an almost equal mixture of a singlet
and a triplet state. The singlet ± triplet gap Equations (11) ±
(13) were derived in the wavefunction framework; however,
we applied them to 1'' in the density functional framework.
We used for EUHF

b the unrestricted B3LYP energy of the

Table 2. The singlet ± triplet gaps computed by means of Equations (11) ± (13) for Na2 molecules with various bond lengths. Quantities used in
Equations (11) ± (13) were obtained from B3LYP computations. The different bond lengths simulate antiferromagnetic couplings of various strengths. In the
case of the weakest antiferromagnetic coupling, Equations (11) and (12) produce singlet ± triplet gaps which are too large by a factor of �2. In the case of a
strong antiferromagnetic coupling, Equations (11) and (13) lead to quite accurate gaps. Over the whole range of coupling strengths, the strong coupling
Equation (13) yields gaps with reasonable accuracy. This arises from a cancellation of errors.[34]

Entry Quantity RNa±Na� 4.5 � RNa±Na� 5.0 � RNa±Na� 5.5 � RNa±Na� 6.0 �

1 EB3LYP
s ÿ 324.582291 ÿ 324.575223 ÿ 324.569338 ÿ 324.564658

2 EUB3LYP
b ÿ 324.583098 ÿ 324.578676 ÿ 324.576150 ÿ 324.574791

3 EROB3LYP
t ÿ 324.572403 ÿ 324.572849 ÿ 324.573023 ÿ 324.573112

4 EUB3LYP
t ÿ 324.572413 ÿ 324.572860 ÿ 324.573034 ÿ 324.573123

5 ECCSD�T�
s ÿECCSD�T�

t ÿ 0.011283 ÿ 0.006129 ÿ 0.003040 ÿ 0.001378
6 Equation (11) ÿ 0.013384 (119 %) ÿ 0.009001 (147 %) ÿ 0.005502 (181 %) ÿ 0.003164 (230 %)
7 Equation (12) ÿ 0.021390 (190 %) ÿ 0.011654 (190 %) ÿ 0.006254 (206 %) ÿ 0.003358 (244 %)
8 Equation (13) ÿ 0.010695 (95 %) ÿ 0.005827 (95 %) ÿ 0.003127 (103 %) ÿ 0.001679 (122 %)
9 hYUB3LYP

b jS2 jYUB3LYP
b i 0.4018 0.7065 0.8633 0.9387
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symmetry-broken electronic state of 1''. For EÄ
t we applied the

restricted open-shell B3LYP energy of the first excited triplet
state of 1''.

The crystal structure analysis indicates that 1 is nonplanar.[1]

The nonplanarity is reproduced by the BP86 DFT procedure,
whereas the B3LYP DFT method indicates a planar geometry.
Both schemes, however, yield similar bond lengths. The
B3LYP scheme produces a reasonable singlet ± triplet energy
gap (see the section on the ªoverall magnetic propertiesº)
which is too large when the BP86 procedure is employed.
Therefore, we used B3LYP to obtain the singlet ± triplet
energy splittings, but BP86 to compute the geometry of 1''. The
good performance of the BP86 procedure to compute geom-
etries of transition metal compounds has already been
recognized by Jonas and Thiel:[39] they computed geometries
and vibrational frequencies for transition metal carbonyls that
are in excellent agreement with experiment.[39]

The computed geometry : The BP86-optimized bond lengths
and angles of model complex 1'' are given in Figure 1 and
Table 4. The computed bond lengths of 1'' are in qualitative

agreement with the experimental bond lengths of 1.[1] In
particular, the bond length alternation found experimentally
in the phenyl rings of 1 is reasonably reproduced by the
computation. The ring carbon ± carbon bonds in 1'' can be
partitioned into two sets located on the left-hand side or the
right-hand side of an assumed mirror plane that is perpen-
dicular to the molecular plane. Any bond in one set
corresponds to a bond in the other set, and both correspond-
ing bond lengths are computed to be almost equal. In the
crystal structure of 1, however, the experimental bond lengths
of the corresponding bonds seem to be different (Figure 1).
This might be induced by the presence of the tert-butyl and the
ethyl substituents in 1 and/or crystal packing effects. The
copper atom in complex 1'' was found to be slightly out of the
plane spanned by the nitrogen atoms N(2) and N(25) and the
oxygen atoms O(13) and O(24).[1] The position of the Cu atom
is compatible with a small distortion from the square-planar
geometry towards a tetrahedral geometry. This is reflected by
the computed bond angles N(2)-Cu(1)-N(25) and O(24)-
Cu(1)-O(13), which are close to the experimental angles
(Table 4).[1] The two phenyl rings were computed to be almost
coplanar. In the crystal, however, there is angle of 26.58
between the two planes of the phenyl rings.[40]

The overall magnetic properties :
A major objective in this work
is to determine the spin multi-
plicity of the electronic ground
state of 1''. Relevant energy
quantities are given in Table 3.
They are computed at the opti-
mized geometry calculated for
the symmetry-broken electron-
ic state. The optimized geome-
try of 1'' and the energy quanti-
ties have been derived in the
B3LYP framework. The unre-
stricted energy EUB3LYP

b for the
symmetry-broken electronic
state is the lowest energy. The
energy EROB3LYP

t , computed
within the restricted open-shell
approach, locates the triplet
state slightly above the symme-
try-broken electronic state.
When the restricted formalism
is applied, a significantly higher
energy, ERB3LYP

s , is obtained for

Table 3. The singlet ± triplet gap computed for model complex 1''. Equa-
tion (13) almost reproduces the experimental value of 274 cmÿ1. The
general spin-corrected Equation (11) seems to be less accurate in the
density functional framework. The singlet ± triplet gap obtained from the
restricted spin-pure DFT calculations is much too large. Moreover, an
unobserved triplet ground state is predicted.

Method E [a.u.] EsÿEt [cmÿ1]

EUB3LYP
b

� ÿ 921.180598
ÿ 224 [Eq. (13)]; ÿ457 [Eq. (11)]

EROB3LYP
t ÿ 921.179573

8105
ERB3LYP

s

�
ÿ 921.142642

Figure 1. A comparison between the BP86-computed bond lengths for model complex 1'' and the experimental
bond lengths for 1[1] given in parentheses. The calculated bond lengths are in agreement with the experimental
bond lengths. In particular, the pronounced alternation in the bond lengths within the rings is reproduced. The
computation leads, however, to equal bond lengths for the bonds which are interrelated by a mirror plane
assumed to be perpendicular to the molecular plane. This seems to be at variance with experiment. The
nonplanarity of the Cu moiety of 1, however, is reasonably reproduced.

Table 4. Selected theoretical (BP86) bond angles of model complex 1'' and
experimental bond angles of 1.[1]

Angle BP86 [8] Experiment [8]

N(2)-Cu(1)-O(24) 85.9 83.8
O(13)-Cu(1)-O(24) 160.7 159.7
O(24)-Cu(1)-N(25) 95.8 96.1
N(2)-Cu(1)-O(13) 85.9 83.3
N(2)-Cu(1)-N(25) 164.1 168.3
O(13)-Cu(1)-N(25) 96.9 99.7
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the singlet ground state. The
symmetry-broken formalism
predicts that 1'' should have a
singlet ground state (Table 3),
which is in agreement with
experiment.[1] We used Equa-
tion (13) to obtain a singlet ±
triplet gap of 224 cmÿ1 for 1''.
This value is close to the exper-
imental value of 274 cmÿ1 de-
rived by fitting the tempera-
ture-dependent magnetic mo-
ments of 1 to the theoretical
curve based on the Heisenberg
Hamiltonian.[1] By the use of
the computed S2 expectation
value of 1.0163, we derived
from the spin-corrected Equa-
tion (11) a singlet ± triplet gap
of 457 cmÿ1. Thus, in spite of the
fact that Equation (11) ac-
counts for spin contamination,
it seems to be less accurate than
Equation (13). This finding
agrees with our above results
for the Na2 molecules with elongated bonds. The UHF results
in Table 1 illustrate that Equation (11) is more accurate than
Equation (13). However, within the B3LYP framework,
Equation (13) produces more accurate singlet ± triplet gaps
than Equation (11). This difference in the behavior of the
UHF and B3LYP schemes is also in agreement with the work
of Ruiz et al.[31] A spin-corrected formula that is similar to
Equation (11), yields rather accurate exchange coupling
constants for the model system H-He-H in the UHF frame-
work. In the B3LYP scheme, however, a strong coupling
formula similar to Equation (13) yields more accurate cou-
pling constants.[31] The good performance of Equation (13)
may arise from a cancellation of errors, as pointed out by
Caballol et al.[34] The energy difference ERB3LYP

s ÿEROB3LYP
t ,

computed in the restricted density functional formalism,
produces a gap of 8105 cmÿ1 which is too large. Moreover, the
electronic ground state of 1 should be a triplet state which is at
variance with experiment.[1] By employing the minimized
nonplanar BP86 geometry and the corresponding energy
quantities, the correct singlet spin multiplicity for the elec-
tronic ground state is predicted. However, Equation (13)
yields a gap of 2420 cmÿ1, which is also too large. An even
larger gap of 2968 cmÿ1 is obtained when Equation (11) is
employed. Nevertheless, our results are further evidence that
molecules that exhibit a weak antiferromagnetic coupling can
be reasonably treated by means of the symmetry-broken
formalism applied in the B3LYP framework.

The spin-density distribution that results from the symmetry-
broken solution : In the following we consider the atomic spin
densities for the symmetry-broken electronic state, although
we know that they are without a physical meaning.[41] Never-
theless, it is of interest to illustrate how details of this spin-
density distribution can serve to obtain qualitative informa-

tion on the character of the magnetic orbitals. In Figure 2 we
present the Mulliken spin populations[23] for the atoms of 1'', as
derived from the symmetry-broken B3LYP solution comput-
ed with the UB3LYP-optimized geometry. The symmetry-
broken solution implies that positive and negative spin
densities appear but they add up to zero. We can identify a-
and b-spin densities by positive and negative spin-density
values, respectively. Thus, Figure 2 shows that a large amount
of a electrons is localized at the copper atom. In contrast, a
large b-spin density is situated at the nitrogen atom N(2).
These findings suggest that an antiferromagnetic coupling
between the copper atom and the iminosemiquinone ligand is
mediated by the imino nitrogen atom N(2) (Figure 2). It is
instructive to consider the gross orbital spin-density popula-
tion[23] at the copper atom and the next nearest atoms involved
in coordination.[42] The spin density in the copper dx2�y2 atomic
orbital (AO) is 0.6543, which is close to the value given in
Figure 2. In our computations, the xy plane is the molecular
plane. Therefore, we conclude that the a electrons at the
copper atom are s electrons. A negative spin density of
ÿ0.2392 is situated in the pz AO of the N(2) atom and a
positive spin density of 0.0875 is located in the py AO.
Therefore, the b and a electrons at the N(2) atom are p and s

electrons, respectively. At the oxygen atoms O(13) and O(24),
small and almost equal amounts of a and b electrons are
present which are of s and p type, respectively. A small
amount of s electrons with a spin is located at the nitrogen
atom N(25). Thus, the gross orbital spin-density pop-
ulations lead to two conclusions: Firstly, the a electrons are
s electrons and they are mainly localized at the copper atom
as well as at the contact atoms N(2), O(13), O(24), and N(25).
Secondly, the b electrons are p electrons and they are
delocalized over the atoms N(2), O(13), and O(24) of the
iminosemiquinone ligand. In the following we illustrate that

Figure 2. The Mulliken spin-density distribution for the symmetry-broken electronic state of 1'' that exhibits an
overall spin density of zero. However, large local spin densities of opposite sign appear at the copper atom and the
iminosemiquinone nitrogen. The antiferromagnetic coupling between these two atoms seems to dominate the
antiferromagnetic coupling in 1''.
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these conclusions are also supported by the form of the
magnetic orbitals.

The magnetic orbitals : In the section above on ªoverall
magnetic propertiesº, we outlined that the symmetry-broken
formalism applied in the B3LYP density functional frame-
work indicates the correct singlet spin multiplicity for the
ground state of 1. Moreover, the computed singlet ± triplet
energy gap is in reasonable agreement with the experimental
value. In this section we suggest and apply a simple method
for the determination of those MOs which are occupied by
electrons involved in a weak antiferromagnetic spin coupling.

Consider two electrons with opposite spins: a strong
antiferromagnetic coupling is exhibited, provided the two
electrons closely approach each other. This can occur in cases
in which the two electrons have the option to occupy the same
spatial regions of a molecule. They occupy the same regions of
space when the two electrons are located in one MO. In other
words, a strong antiferromagnetic coupling operates when the
forms of the a- and b-spin orbitals are identical. This situation
is imposed in the closed-shell restricted MO procedures in
which two electrons of opposite spin occupy the same MO.
This restriction is appropriate for the majority of organic
compounds that exhibit a strong antiferromagnetic coupling
between two electrons which form a bond. However, in order
to treat a weak antiferromagnetic coupling, the adopted
wavefunction should permit the a and b electrons to become
located in a and b MOs whose forms can be different. These
MOs can be localized in different parts of the molecule. This
local character of the MOs is the basis of the valence-bond
configuration-interaction model to describe the electronic
properties of transition metal dimers.[43] The symmetry-
broken UHF wavefunction has the flexibility to describe a
weak antiferromagnetic coupling of electron spins. However,
not all electrons in the UHF wavefunction are weakly
coupled. A strong antiferromagnetic coupling should exist
between those a and b electrons that are located in MOs of
similar shape. Thus, the forms of the a and b MOs of the UHF
wavefunction should be an indicator for differentiating
between strongly and weakly spin-coupled electrons. In the
following, we consider the symmetry-broken electronic state
of 1'' at the B3LYP-optimized geometry. The DFT computa-
tion produces 66 a and 66 b Kohn ± Sham MOs which are
singly occupied. Our aim is to single out the magnetic orbitals
from the two MO sets. The weak antiferromagnetic coupling
of the electrons in the magnetic MOs implies that they should
be found in the high-energy range of a and b MOs. Therefore,
we examined only the a and b MOs with numbers from 35 up
to 66. We plotted the orbitals of this range[44] and we inspected
their forms. For nearly any a MO one finds a matching b MO
whose form is very similar. Moreover, the two matching MOs
are close in energy. Therefore, we can assume that such a pair
of similar MOs is occupied by two electrons that exhibit a
strong antiferromagnetic coupling. Only a-MO 64 and b-
MO 66 do not match, and their forms are given in Figure 3. We
see a-MO 64 is located in the molecular plane of 1''. It has
significant d character at the copper atom; however, it is
mainly localized at the nitrogen and the oxygen atoms of the
iminosemiquinone ligand. It can be characterized as a Cu

Figure 3. The two magnetic orbitals of the model compound 1''. Both
orbitals are singly occupied with electrons of opposite spin. The orbitals are
preferentially localized at the iminosemiquinone ligand and they are of s

and p type. Because of their different spatial orientation, the antiferro-
magnetic coupling between the two electrons is only weak. e is the energy
of the singly occupied molecular orbital.

dx2ÿy2 orbital with a significant contribution of the s orbitals of
the contact atoms. The b-MO 66, however, is a p MO localized
preferentially at the iminosemiquinone ligand. Thus, the MOs
depicted in Figure 3 are different in form, and a weak
antiferromagnetic coupling exists between the electrons
localized in these MOs. If this reasoning is accepted, the
MOs of Figure 3 are the magnetic orbitals[45] of model
complex 1''. They characterize 1'' as a singlet diradical and
only a small energy is required to invert the spins that lead to
the triplet state.

Form of the magnetic orbitals and reactivity : In the previous
section we identified the B3LYP magnetic orbitals of model
complex 1''. In this section we use the form of the magnetic
orbitals to obtain some qualitative information on the
reactivity of 1''. Figure 3 shows the magnetic a orbital
(MO 64) is preferentially localized at the imino nitrogen and
the two carbonyl oxygens of the iminosemiquinone ligand.
The copper d orbital and the sp orbital of the attached NH3

group contribute to a lesser extent. The magnetic b orbital
(MO 66) is a p orbital preferentially localized at the imino-
semiquinone ligand. In the following, we are interested in
those spatial regions of 1'' in which the weakly coupled a and b

electrons prefer to be simultaneously localized. For this
purpose, we consider the two-electron density function
1ab(1,2) that arises from a Slater determinant Y(1,2) com-
posed of the two magnetic MOs fa and fb. By the use of such
a simple one-determinantal wavefunction, 1ab(1,2) is entirely
determined by the two one-electron density functions 1a and
1b.[46] Therefore, we can write Equation (14):

1ab(1,2)� �Y(1,2)Y(1,2)ds(1)ds(2)� 1a(1)1b(2)�fa(1)2fb(2)2�
[fa(1)fb(2)]2 (14)

The integration is performed over the two spin variables
s(1) and s(2).[46] We see, 1ab(1,2) should have large functional
values in those spatial regions in which the two-electron
product function fa(1)fb(2) is large. These are the regions in
which fa and fb have large functional values. In Figure 4 we
have schematically represented the spatial regions where fa

and fb are large. Thus, the spatial regions in which to
simultaneously find the two weakly spin-coupled electrons are
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near the carbonyl and the N ± C groups of the iminosemiqui-
none ligand. This small distance between the weakly spin-
coupled electrons implies that the two-electron exchange
integral over the magnetic orbitals[6c] should be large. There-
fore, one should expect that the ferromagnetic contribution[6c]

to the exchange coupling constant is large. As indicated by
Figure 4, the b and a electrons are localized out and in the
molecular plane, respectively. Furthermore, we realize that
the two MO occupations resemble the MO occupation
pattern used to qualitatively describe the singlet excited
n ± p* states of the carbonyl (R2C�O) and of the imino
(R2C�NH) groups.[47] Thus, for the singlet ground state of
model complex 1'', which exhibits a weak antiferromagnetic
coupling, the n ± p* state photochemistries of the R2C�O and
of the R2C�NH groups should be relevant. One of the
efficient photoreactions of the n ± p* excited R2C�O group is
hydrogen-atom abstraction from molecules which are hydro-
gen-atom donors.[48] Hydrogen-atom abstraction occurs from
the triplet[49] and singlet[50] excited n ± p* states. Photochem-
ical hydrogen-atom abstractions for the isoelectronic R2�NH
group were also observed.[51] The n ± p* state of the R2�NH
group, however, seems not to be the reactive electronic state
and reactions are less efficient.[52] The electron in the magnetic
p orbital of 1'' is higher in energy than the electron in the
magnetic s orbital (Figure 3). The high energy of the p

electron implies that 1'' should be rather reactive. One possible
reaction pathway is to abstract a nearby hydrogen atom with
an electron of opposite spin. In this way the weakly coupled p

electron succeeds in becoming paired in a newly formed s

bond. Thus, the form and the energy of the magnetic p orbital
(Figure 3) suggests that hydrogen-atom migration towards the
iminosemiquinone ligand is an important reaction pathway
for complex 1. Probably, hydrogen-atom migration towards
the carbonyl oxygen of the iminosemiquinone ligand prevails.
Hydrogen-atom abstraction is the reaction proposed to be
rate determining in the aerobic oxidation of alcohols cata-
lyzed by complex 1 (Scheme 1).[1] This proposal has been
experimentally substantiated by a pronounced kinetic isotope
effect on the overall rate constants k for the oxidation process.
If the a hydrogens of the benzyl alcohol are selectively
replaced by deuterium, a kH/kD ratio of eight was deter-

mined.[1] This shows that the a

hydrogens of the benzyl alcohol
are involved in the rate-deter-
mining hydrogen-atom abstrac-
tion.[1] We find that this notion
is also supported by the form of
the magnetic orbitals.

Properties of the triplet state : In
the previous section we ob-
tained results for model com-
plex 1'' that are based on the
electronic properties of the
B3LYP symmetry-broken elec-
tronic state. A simple scheme
was applied to determine mag-
netic orbitals occupied by elec-
trons that exhibit a weak anti-

ferromagnetic coupling. The form of these orbitals supports
the qualitative conclusion that the carbonyl groups of the
ligand are prone to performing hydrogen-atom abstraction.
The experiment indicates that the electronic ground state of 1
is a singlet state.[1] The exchange coupling constant of J�
ÿ137 cmÿ1, however, indicates that during a chemical reac-
tion, the lowest triplet state of 1 is easily accessible. Thus, for a
qualitative understanding of the reactivity of 1 it is mandatory
to analyze the lowest triplet state as well. Table 1 shows that
for the model Na2 molecules the restricted open-shell energies
for the lowest triplet state EROHF

t are very close to the coupled-
cluster energies ECCSD�T�

t . Therefore, we can hope that the
lowest triplet state of complex 1'' is also well described by the
restricted open-shell DFT approach. We used the ROB3LYP/
SDD level[23] of theory to optimize the geometry of the lowest
triplet state of 1''. The calculated bond lengths for the triplet
state are very similar to the bond lengths calculated for the
symmetry-broken electronic state. This finding shows that
unpairing the weakly coupled electrons in the singlet state has
only a marginal effect on the electron distribution that
determines the geometry. The overall spin density, however,
is strongly affected. This is reflected by the atomic Mulliken
spin-density distribution[23] for the triplet state as (Figure 5).
The largest spin density is computed for the copper atom.
Appreciable values are also found at the nitrogen and the two
carbonyl oxygens of the iminosemiquinone ligand. In the
restricted open-shell formalism the spin densities for the
triplet state are determined by the two singly occupied MOs
that carry electrons of parallel spin. These MOs are the a

orbitals 66 and 67 depicted in Figure 6. We realize that their
forms are virtually identical to the forms of the magnetic
orbitals for the symmetry-broken electronic state (Figure 3).
Even their relative energetic ordering is similar. These
findings illustrate that on moving from the symmetry-broken
electronic state to the first excited triplet state only one spin is
inverted. The space parts of the magnetic orbitals, however,
should remain the same for the symmetry-broken formalism
and for the first excited triplet state. The similarity of the
orbitals shown in Figures 3 and 6 confirms that we identified
the correct magnetic orbitals. Moreover, from Figure 6 one
can conclude that the spatial regions for simultaneously

Figure 4. Spatial regions in the iminosemiquinone ligand in which the two weakly coupled electrons prefer to be
located simultaneously. These regions are determined by the form of the magnetic orbitals. The electronic
structures around the oxygen and nitrogen atoms resemble the electronic structures of the n ± p* states of the
carbonyl and the imino groups, respectively.
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Figure 6. The two singly occupied orbitals for the lowest triplet state of
model complex 1''. Their form is almost identical to the form of the
magnetic orbitals for the symmetry-broken electronic state (Figure 3). This
similarity supports the notion that the exchange coupling in 1'' can be
qualitatively rationalized by means of the two magnetic orbitals depicted in
Figure 3. e is the energy of the singly occupied molecular orbital.

finding two electrons with a spins are identical to the regions
in which two electrons with opposite spin can be found
(Figure 4). These regions are situated in a fashion that
simulates a triplet n ± p* excitation. Such excitations of the
carbonyl groups are known to induce hydrogen-atom abstrac-
tions.[48] Because of the longer lifetimes of the triplet states
they are more efficient for hydrogen-atom abstractions than
singlet states.[50] In complex 1 both electronic states are easily
accessible, as indicated by the small singlet ± triplet gap of
274 cmÿ1. In the organic photochemistry both electronic states
are found to induce hydrogen-atom abstraction. Therefore,
this reaction pathway should be important. Our qualitative
theoretical analysis supports the proposal[1] that hydrogen-
atom abstraction is the rate-determining step in the catalytic
oxidation of alcohols (Scheme 1).

Conclusions

We have applied the symmetry-broken formalism[5] to eluci-
date the electronic structure of the iminosemiquinone cop-

per(ii) catalyst 1. A character-
istic feature of our analysis is
that we applied analytic formu-
las derived within the unre-
stricted Hartree ± Fock scheme,
but applied energies computed
within the unrestricted DFT
framework.[7] Moreover, the
unrestricted Kohn ± Sham orbi-
tals were used as a substitute for
the UHF MOs. As in previous
work,[7] this methodology also
leads to the correct singlet spin
multiplicity of 1''. Moreover, the
observed singlet ± triplet energy
gap was reasonably repro-
duced, provided the B3LYP
density functional scheme is
applied. We were particularly
interested in the determination
of the two magnetic orbitals
which are singly occupied by
two electrons that exhibit a

weak antiferromagnetic coupling. We determined the mag-
netic orbitals by pursuing the notion that the shape of these
orbitals should be different. This difference in shape prevents
the close approach of the two spin-coupled electrons to one
another to result in a weak antiferromagnetic coupling. The
shape argument leads to a simple method to distinguish
between MOs carrying strongly or weakly spin-coupled
electrons. On inspection of the forms of the occupied
unrestricted Kohn ± Sham orbitals, we find that almost any a

orbital matches a b orbital in form and energy. Those orbital
pairs contain electrons, which exhibit a strong antiferromag-
netic coupling. The only exception are the two magnetic
orbitals represented in Figure 3. The a(b) orbital does not find
a matching partner in the set of the occupied b(a) orbitals and
this implies a weak antiferromagnetic coupling between the
spins of the electrons in the magnetic orbitals. Consequently,
atoms in a molecule that carry those unpaired spins are prone
to reactions which lead to a more effective spin pairing.
Guided by the form of the magnetic orbitals, we determined
qualitatively that such a reaction of 1'' can be a hydrogen-atom
abstraction. This finding corroborates the suggestion of
Wieghardt and co-workers that a hydrogen-atom abstraction
reaction for 1 should be the rate-determining step in the
catalytic cycle given in Scheme 1.[1] Our theoretical results
support the notion that the form of the magnetic orbitals
might be a qualitative tool for the prediction of the reactivity
of compounds that exhibit a weak antiferromagnetic coupling.
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